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Abstract

Manually indexing documents for subject-based access is a labour-intensive 
process. We propose using metadata gathered from bibliographic databases 
to train algorithms that assist librarians in that work. We have developed 
Annif, an open source tool and microservice for automated subject index-
ing. After training it with a subject vocabulary and existing metadata, Annif 
can be used to assign subject headings for new documents. We have tested 
Annif with different document collections including scientific papers, old 
scanned books and contemporary e-books, Q&A pairs from an “ask a librar-
ian” service, Finnish Wikipedia, and the archives of a local newspaper. The 
results of analysing scientific papers and current books have been reassur-
ing, while other types of documents have proved to be more challenging. 
The current version is based on a combination of existing natural language 
processing and machine learning tools. By combining multiple approaches 
and existing open source algorithms, Annif can build on the strengths of 
individual algorithms and adapt to different settings. With Annif, we expect 
to improve subject indexing and classification processes especially for elec-
tronic documents as well as collections that otherwise would not be indexed 
at all.

Keywords: metadata; automated subject indexing; natural language process-
ing; machine learning

http://liberquarterly.eu/
http://dx.doi.org/10.18352/lq.10285
mailto:osma.suominen@helsinki.fi
http://orcid.org/0000-0003-0042-0745


Annif: DIY Automated Subject Indexing Using  Multiple Algorithms

2  Liber Quarterly Volume 29 2019

1. Introduction

Libraries manage a vast amount of metadata about different kinds of docu-
ments. Typically, these documents are indexed with subject headings from a 
subject vocabulary such as a thesaurus or subject heading system to improve 
discoverability. Manually indexing documents is a very labour-intensive intel-
lectual process. Many new documents are available electronically, so it is possi-
ble to have a machine perform part of the indexing based on either the full text 
or shorter pieces of text such as a summary, an abstract, or a descriptive title.

For the machine to perform well, it needs to be trained with examples. 
Libraries have a lot of training data in the form of bibliographic databases, 
but in many cases, only a title and possibly an abstract is available, but not the 
full text. We propose to leverage that data to help indexing new documents.

To do so, we have developed Annif, an open source multi-algorithm auto-
mated indexing tool. After loading a subject vocabulary and existing meta-
data, Annif learns how to assign subject headings to new documents. It can 
also be used as a web service that can be integrated with other systems. Annif 
is being developed on GitHub1 and thanks to the collaboration between the 
Zenodo repository and GitHub, it also has a permanent DOI.2 An initial pro-
totype was developed in early 2017 and a new version that is suitable for 
production use is now ready to be used.

2. Background and Related Work

In this section we explain the typical process of operation of automated 
indexing systems, review the main approaches used in automated index-
ing and discuss how automated indexing services can be provided as web 
services that can be integrated with other systems. We will also consider the 
limitations of existing systems from the perspective of libraries.

2.1. Process of Automated Indexing

Automated subject indexing systems generally follow a particular process. 
First, text documents are preprocessed, for example by tokenizing the text into 
sentences and individual words, converting words into lower case, removing 
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stop words and/or stemming or lemmatizing words so that different gram-
matical variations of the same word are reduced to the stem or lemma that 
identifies the meaning of the word. Second, the documents are often converted 
into a vector representation of word frequencies, known as a bag-of-words 
model, that can be used to query for matching subjects using a suitable algo-
rithm. Alternatively, the preprocessed tokens may be directly matched with 
terms from a controlled vocabulary. In both cases, the result is a list of candidate 
subjects for the document. In order to determine the final set of suggested sub-
jects for the document, the candidates must then be ranked and only the most 
promising ones retained (Medelyan, 2009; Toepfer & Seifert, 2018).

2.2. Approaches

Algorithms for automated subject indexing can generally be divided into lexi-
cal and associative approaches (Toepfer & Seifert, 2018). In lexical approaches, 
frequently occurring or otherwise salient terms in the document are matched 
with terms in the vocabulary. Such algorithms can be relatively simple and 
precise, but their downside is that quite often not all relevant subjects appear 
verbatim in document text, so these will never be suggested by lexical algo-
rithms (Pouliquen, Steinberger, & Ignat, 2003). Associative approaches, 
including machine learning algorithms, instead find correlations between 
words (or, more generally, short sequences of words called n-grams) in docu-
ment text and subjects, based on a large amount of training data. These two 
approaches can be considered complementary, and often the best results are 
obtained by combining results from both kinds of algorithms using ensembles 
and/or fusion architectures (Toepfer & Seifert, 2018).

2.2.1. Lexical Approaches

Well-known lexical automated subject indexing systems include KEA and its 
successors KEA++ and Maui (Medelyan, 2009). They support multiple lan-
guages and they can be used with any indexing vocabulary. Another lexical 
automated subject indexing system is the Medical Text Indexer developed by 
the US National Library of Medicine for indexing medical documents with 
the Medical Subject Headings vocabulary (Mork, Jimeno-Yepes, & Aronson, 
2013). Although all of these systems include some machine learning aspects, 
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they are primarily based on lexical matching between vocabulary terms and 
document terms.

2.2.2. Machine Learning Approaches

Many machine learning based systems for automated subject indexing have 
been developed since the 1990s, when the approach became the dominant par-
adigm for automated subject indexing (Sebastiani, 2002). Some recent exam-
ples for which an implementation is available include Magpie (Berger, 2015; 
Kim, 2014), FastXML (Prabhu & Varma, 2014), PD-Sparse (Yen, Huang, Zhong, 
Ravikumar, & Dhillon, 2016), fastText (Joulin, Grave, Bojanowski, & Mikolov, 
2017), Quadflor (Galke, Mai, Schelten, Brunsch, & Scherp, 2017), AnnexML 
(Tagami, 2017) and Parabel (Prabhu, Kag, Harsola, Agrawal, & Varma, 2018).

2.3. Web Services

Some automated subject indexing systems are also available as web services 
which can be integrated with existing document management systems. The 
BioPortal ontology repository3 provides a service called Annotator, which is 
given text and matches terms in the text to concepts in biomedical vocabular-
ies such as SNOMED CT. It can be used to find concepts in ontologies that 
correspond to variables or other entities in a description of a biomedical data 
set (Jonquet, Shah, & Musen, 2009). Another somewhat similar annotation 
and entity extraction service is DBpedia Spotlight, which finds occurrences 
of DBpedia entities within text (Daiber, Jakob, Hokamp, & Mendes, 2013). 
The focus of both of these tools is to provide a web API for retrieving all the 
matches within the given text. They do not try to determine the most relevant 
subjects of a document, so by themselves they only solve the first part of an 
automated subject indexing task, which is to determine possible candidate 
subjects for a given text.

2.4. Commercial Tools

Some commercial vocabulary management tools also include entity extrac-
tion and/or automated subject indexing functionalities. The PoolParty 
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thesaurus management platform includes the PoolParty Extractor module,4 
which finds entities in text that correspond to concepts in the thesaurus and 
may also suggest new concepts for addition. This functionality was at least 
initially based on a modified version of KEA (Schandl & Blumauer, 2010). 
The TopBraid Enterprise Data Graph suite includes the AutoClassifier mod-
ule5 which uses Maui to perform a similar function, suggesting concepts that 
best represent the topic of an input document (Cyganiak, 2015). Both tools 
provide a REST-style web API that enables integration of the subject indexing 
functionality with other systems.

2.5. Limitations of Existing Systems

From the perspective of libraries, the systems mentioned above suffer from 
one or more drawbacks. First, many tools are limited to a single language 
(often English) and/or tied to a specific subject vocabulary. Yet subject index-
ing practices vary in different institutions and often there is a need to index 
materials in multiple languages and also use several different vocabularies. 
Second, the tools that are not language- or vocabulary-specific, including 
KEA, KEA++, Maui and the many machine learning algorithms, can be dif-
ficult to integrate with existing systems used for cataloguing and indexing, 
since they are either provided as command line tools or as software libraries 
in a particular implementation language. The commercial systems provide 
web services that are designed to be easily integrated with other systems, but 
their implementation is controlled by the respective vendors.

3. Architecture

The first prototype of Annif was created in early 2017. It consisted of a loose 
collection of Python scripts that implemented a minimal REST API and a 
simple web user interface. An Elasticsearch index was used to find associa-
tions between subjects in a vocabulary and words in document titles that had 
been collected from the Finna API.6 The idea was to turn a traditional text 
index on its head: instead of entering a topic and getting a list of documents 
about that topic in response, the input would be a single document and the 
output would be the most relevant topics for that document. The name given 
to the tool reflects this idea: Annif is Finna spelled backwards. The prototype 
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worked well enough to demonstrate the utility of the approach, but the tech-
nical implementation would have been difficult to maintain, so development 
of a new version was started in early 2018.

The new Annif is implemented as a Python application using the Flask and 
Connexion frameworks for web server and REST API functionality. The subject 
indexing and classification is handled by different backends, i.e. different algo-
rithms that can be used either alone or in combinations (so-called ensembles). 
Each backend is implemented as a separate module and new backends can be 
added in the future. A more detailed system architecture diagram is shown in 
Figure 1. This figure will be explained in more detail through sections 3.1 to 3.7.

3.1. Project Configuration

Annif is configured by defining projects, which are used to set up backends 
and configure them with a specific vocabulary and parameters, including its 
language and analyzer (see section 3.2 below). Each project is independent of 

Fig. 1: Annif system architecture.
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other projects but in some cases projects may be linked, for example by using 
the output of one project as the input of an ensemble project. The projects are 
defined in a configuration file (① in Figure 1).

3.2. Analyzers

Document text needs to be preprocessed before it can be analyzed with sub-
ject indexing algorithms. In Annif, text preprocessing is handled by Analyzer 
modules, that tokenize the text into sentences and individual words. Words 
may further be normalized using language-specific stemming or lemmati-
zation algorithms. Tokenization and stemming are implemented using the 
NLTK library,7 which provides a Snowball stemmer that supports 15 different 
languages. There is also a lemmatizing algorithm for the Finnish language 
based on the Voikko library.8

3.3. Vocabulary Support

Annif needs to be aware of the subject vocabulary that will be used for index-
ing. The vocabulary module handles loading and storing of vocabulary data. 
Vocabularies can be loaded either from simple TSV files or from SKOS/RDF 
files (② in Figure 1). The same vocabulary may be shared by multiple Annif 
projects and needs to be loaded only once.

3.4. Subject Indexing Algorithms

Currently, four subject indexing algorithms have been implemented as Annif 
backends. All implementations are based on existing open source libraries, 
which have been integrated into the Annif framework. Maui uses a lexical 
approach, while TF-IDF, fastText and Vowpal Wabbit represent different kinds 
of associative approaches. Most algorithms need to be trained using existing 
metadata and/or full text documents (③ in Figure 1).

3.4.1. Maui

Maui is a lexical automated subject indexing algorithm developed at the 
University of Waikato (Medelyan, 2009). It incorporates a large number of 
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heuristics for determining which of the possible matches between terms 
in a vocabulary and words in a document best represent the topics of that 
document. The balance between the available heuristics is determined using 
machine learning, so a relatively small amount of manually indexed docu-
ments (up to a few hundred) is required for training a Maui model. In Annif, 
Maui is used via the http backend, which allows integrating subject index-
ing services which have a suitable REST API, including Annif itself and 
MauiService,9 a REST microservice wrapper around Maui.

3.4.2. TF-IDF

The tfidf backend in Annif is a relatively simple statistical method used for 
finding correlations between subjects in the vocabulary and words in docu-
ments. A representative set of text is formed for each subject in the vocabulary 
by concatenating text (usually only titles) from documents that have been 
manually indexed with that subject. The term frequencies and inverse document 
frequencies are then calculated for all words appearing in those sets and these 
TF-IDF values are stored as vectors in an index. For new documents, TF-IDF 
vectors are similarly calculated and the most similar subjects are retrieved 
from the index. The calculations are performed using the Gensim library 
(Řehůřek & Sojka, 2010).

3.4.3. fastText

fastText (Joulin et al., 2017) is a machine learning algorithm for text clas-
sification created at Facebook Research. It claims to be roughly on par with 
deep learning approaches despite using a simpler architecture that resem-
bles a shallow feed-forward neural network. The algorithm is relatively fast 
to train compared to other machine learning approaches, in part thanks to 
some tricks and shortcuts used in the implementation. The fasttext back-
end in Annif is a thin wrapper around the fastText Python bindings. There 
are quite a few hyperparameters to select and these may be tuned to attain 
good classification accuracy using a particular vocabulary and document 
corpus.
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3.4.4. Vowpal Wabbit

Vowpal Wabbit (VW)10 is a general purpose online machine learning frame-
work. It was originally created by Yahoo! Research and current development 
continues at Microsoft Research. The vw_multi backend in Annif is a wrapper 
around several VW algorithms for multi-class and multi-label classification. 
Thanks to the online learning approach, the VW models can be further trained 
during use based on feedback from a user verifying the suggestions made by 
the algorithm. As the most recent addition to the Annif backends it has not 
yet been thoroughly evaluated, but it appears to be best suited for classifica-
tion with relatively small (fewer than 1,000 classes/subjects) vocabularies.

3.5. Ensembles and Data Fusion

All automated subject indexing algorithms have their drawbacks. Incorrect 
subject assignments can be caused by many factors, including homonyms 
(e.g. ‘rock’ can mean stone or a kind of music), misinterpreted names (e.g. 
‘Smith’ as a surname or a profession), correlations in data that do not imply 
causation, biased training data and random noise. Generally speaking, differ-
ent kinds of algorithms tend to make different mistakes. A good strategy for 
improving quality is thus to combine different algorithms aiming to bring out 
the strengths of individual algorithms while diminishing their flaws.

Fusion methods for automated subject indexing (Toepfer & Seifert, 2018) 
are ways of combining results from multiple algorithms. The algorithms are 
combined into an ensemble and the final prediction of subjects is made by 
using a decision function applied on the predictions of individual algorithms. 
Fusion methods can be further divided into descriptor-invariant and descriptor-
specific decision functions. In a descriptor-invariant function, every concept is 
handled in the same way, while descriptor-specific functions vary per indi-
vidual concept. Annif supports two fusion backends, which combine results 
from configured source backends.

3.5.1. Simple Ensemble

The ensemble backend in Annif implements a simple, descriptor-invariant 
fusion method where the predictions from individual algorithms are merged 
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by calculating the mean of score values for each predicted subject and using 
those as the final prediction. No learning is involved in this method.

3.5.2. PAV Ensemble

The pav backend in Annif implements a more advanced, descriptor-specific 
fusion method. It requires some more manually indexed full text documents 
for training in addition to those used to train the original backends. In experi-
ments described in more detail in section 4 below, we have obtained good 
results using thousands of training documents to train PAV ensembles.

The training documents are first passed to the backend algorithms within the 
ensemble. Their prediction results are compared with the manually assigned 
subjects using isotonic regression, which is a statistical method that can be 
used for estimating the relationship between score values returned by the 
backends for particular subjects and the probability of the subject being rel-
evant for the document (Wilbur & Kim, 2014). A separate regression model 
is created for each backend and each subject. New documents are first ana-
lyzed by the backends and the regression models are applied to the predicted 
scores, giving predicted probabilities. The final prediction is calculated using 
the mean value of the predicted probabilities.

3.6. Command Line Interface

Annif provides a command line interface which is mainly intended for ini-
tial setup, training, and evaluation of models. The training of models is done 
by providing Annif with training documents expressed in simple text file 
formats.11 It can also be used to assign subjects to individual documents or 
document collections stored as text files. The command line interface can also 
be used to evaluate the algorithms by comparing their output to manually 
indexed document collections. Annif can be used to calculate many evalua-
tion metrics, including precision, recall, F1 score and normalized discounted 
cumulative gain (NDCG).

When using the command line, the models need to be loaded from disk into 
memory separately for each invocation, so using large models is not very effi-
cient. After initial setup and experimentation, setting up Annif as a persistent 
web service is recommended.
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3.7. REST API

When Annif is run as a web service it provides a relatively simple REST API12 
which exposes the automated indexing functionality to other applications. The 
web server functionality of Annif is based on the Flask and Connexion tool-
kits and can be integrated with standard web server software such as Apache 
HTTPD using a WSGI gateway service (e.g. mod_wsgi). The core method 
of the API is suggest, which is given a text document and returns a JSON-
encoded list of suggested subjects (concept URIs and labels) along with their 
estimated scores. Another important method is learn, which is given one or 
more text documents along with verified subjects for each document, and the 
corresponding models are updated based on this feedback. Currently only the 
Vowpal Wabbit based backend supports this kind of feedback-based online 
learning but learning support will be extended to other backends in the future.

4. Evaluation

Annif has been evaluated with several Finnish language corpora.

4.1. Vocabulary

All of the documents have been manually indexed using either the General 
Finnish Thesaurus YSA or its successor, the General Finnish Ontology YSO. 
For corpora indexed using YSA, the YSA subjects have been converted to 
their nearest YSO equivalents.

4.2. Training Data

The following algorithms were used:

•	 TF-IDF model trained using metadata from Finna.fi
•	 fastText model trained using metadata from Finna.fi
•	 Maui model trained using a combination of all the maui-train subsets
•	 PAV specific: PAV models trained on a train set specific to each corpus
•	 PAV generic: a single PAV model trained on a combination of all train 

sets
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4.3. Document Corpora

The following corpora were used for evaluation:

1. Arto: Articles from the Arto13 bibliographic database (n=6,287 arti-
cles). These include both academic articles as well as less formal pub-
lications from e.g. professional journals, and cover many different 
disciplines.

2. JYU Theses: Master’s and doctoral theses from University of Jyväskylä 
(n=7,400) published in the years 2010 to 2017 (inclusive). These are 
long, in-depth academic documents that cover many disciplines.

3. AskLib: Question and answer pairs from the Ask a Librarian service 
run by public libraries in Finland. The original database consisted of 
over 25,000 documents but we extracted the subset with a minimum 
of 4 subjects per document (n=3,150). These are short, informal ques-
tions and answers about many different topics.

4. Satakunnan Kansa: Digital archives of Satakunnan Kansa regional 
newspaper. The archives consist of over 100,000 unindexed docu-
ments. Out of these, a random sample of 50 documents was manu-
ally indexed by four librarians working independently.

The corpora 1–3 are available on GitHub, in the Annif-corpora14 public repos-
itory. In corpora 1 and 2, only links to PDF files are provided due to copyright 
reasons, but the full text is available elsewhere on the web.

Each corpus was split into train, validate and test subsets, where the train set 
was to be used for training Annif algorithm, the validate set for choosing opti-
mal hyperparameters and limit/threshold settings, and the test set for final 
evaluation. For the Arto corpus, a random split was used. For JYU Theses 
and AskLib, the corpus was split by publication time: documents published 
before 2016 were assigned to the train set, documents published in 2016 to the 
validate set and documents published in 2017 to the test set. For the first three 
corpora, an additional maui-train subset, intended for training Maui mod-
els, was created by taking a random sample of 200 documents from the train 
set. For Satakunnan Kansa, all the manually indexed documents were used 
only as a test set. Each document was indexed independently by four librar-
ians. We considered each set of subjects independently, so the evaluation was 
performed on 200 different document/subject combinations. The number of 
documents in each subset are summarized in Table 1.
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4.4. Evaluation Results

The main evaluation measure was F1 score. However, since F1 score is sensi-
tive to the number of subjects assigned to each document, which is affected 
by the limit and threshold parameters, we applied a limit of at most sug-
gested 5 subjects per document, which appeared to be near-optimal based on 
evaluation on the validate sets. The results of evaluations on the final test sets 
are shown in Figure 2.

Based on the evaluation results, we can conclude the following:

1. Of the individual algorithms, Maui performed best on all corpora. 
The relative performance of TF-IDF and fastText varied by corpus, 
with TF-IDF being somewhat better on average.

2. The ensemble models were always superior to individual algorithms.

Table 1: Subsets of the document corpora used for evaluation.

Corpus  # train  # maui-train # validate  # test

Arto  5,287 (84%) 200 (3%)  500 (8%)  500 (8%)
JYU Theses  3,635 (70%) 200 (4%)  786 (15%)  766 (15%)
AskLib  2,625 (83%) 200 (6%)  213 (7%)  312 (10%)
Satakunnan Kansa  –  –  –  50*4

Fig. 2: Evaluation results.
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3. The PAV ensembles were generally superior to plain ensembles, with 
the exception of the Satakunnan Kansa corpus.

4. The generic and specific PAV ensembles were roughly on par, but for 
AskLib, the specific PAV ensemble performed slightly better.

5. Usage Scenarios

Automated subject indexing can be used to assist manual indexing (semi-
automated indexing), so that an algorithm is used to suggest subjects for a new 
document which are then verified manually, or independently (fully auto-
mated indexing), so that the suggestions of the algorithm are accepted without 
manual verification. Annif may be used in both kinds of scenarios as well as 
some less conventional settings.

5.1. Semi-Automated Indexing

In semi-automated subject indexing, the quality of results is not as critical as 
in the fully automated case, but the suggestions of the algorithm must still 
provide value to the indexer instead of being a distraction. Automated sug-
gestions can be incorporated into existing manual indexing workflows.

5.1.1. JYX Institutional Repository

The University of Jyväskylä has integrated Annif into its institutional reposi-
tory JYX,15 which is used, among other purposes, for archiving Master’s and 
doctoral theses. Students upload their thesis to the repository as a PDF file 
and are then requested to enter metadata about the thesis, including subjects. 
The text is extracted from the PDF document and sent to the Annif REST API 
for analysis. The predicted subjects are shown to the student, who can then 
select the most appropriate subjects and also enter additional subjects that the 
algorithm has missed. A screenshot of the suggestions is shown in Figure 3.

The university was an early adopter of Annif and started using the REST API 
of the Annif prototype in May 2018, when a new version of the JYX reposi-
tory was launched. In the beginning of November 2018, JYX switched to the 
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REST API of the new Annif implementation. The university has collected data 
about the subjects suggested by Annif for Master’s theses, the choices made 
by students and the final subjects assigned by librarians, who perform the 
final validation of metadata. This data makes it possible to evaluate the qual-
ity of subjects suggested by Annif and to compare the quality of the Annif 
prototype against the new version.

From May to October 2018, 890 Master’s theses were uploaded to JYX and 
analyzed by the Annif prototype. From November 2018 to January 2019, a 
further 385 Master’s theses were uploaded and analyzed by the new version 
of Annif, which used a simple ensemble model combining TF-IDF, fastText 
and Maui algorithms.

Similarity between the subjects suggested by Annif (either the prototype or 
new version), the subjects selected by students and the final subjects assigned 
by librarians is shown in Figure 4. We can see that approximately one third of 
the subjects suggested by the Annif prototype were selected both by students 
and the librarians making the final choices, which already shows that the 
system provided value to the users of JYX. However, the results for the new 

Fig. 3: Subjects suggested by Annif after uploading a document to the JYX repository.
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version were much better: students selected approximately one half of the 
suggestions by Annif, and the librarians slightly more (53%). The variation in 
F1 scores between documents is quite high, as shown by the error bars, indi-
cating that the results were much better for some theses than for other. In the 
case of students, some of this variation can be explained by students who did 
not select any subject from the suggestions (30% for the prototype, 15% for 
the new version). We cannot tell whether this happened because the sugges-
tions were very bad or because of some other, unrelated reason.

The similarity scores for the new version are analyzed broken down by 
university department in Figure 5. Due to the relatively small number of 
documents and the high variation in F1 scores, we cannot draw any firm con-
clusions, but it appears that the best results are obtained in the humanities, 
while results are not as good in mathematics, science and technology. This 
pattern may be due to differences in granularity of the subject vocabulary in 

Fig. 4: F1 similarity between Annif suggestions, student-selected subjects and final subjects 
in JYX, for the Annif prototype and new version.

Fig. 5: F1 similarity between Annif (new version) suggestions, student-selected subjects and 
final subjects in JYX, by department.
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different topical areas, as well as the different nature of concepts in different 
fields: in the humanities, concepts may often be broader and fuzzier, whereas 
in more technical fields they can be more specific and strictly bounded.

5.2. Fully Automated Indexing

Fully automated indexing is suitable for large document collections, where 
manual verification of suggested subjects is not feasible. Typically, stricter 
criteria are applied on the suggested concepts: the number of subjects per 
document is limited to a small number and a high score or probability thresh-
old is used to restrict the assigned subjects to only the most certain ones. To 
demonstrate how Annif can be applied for automatically indexing large doc-
ument collections, we have tested it on two large document corpora: Finnish 
Wikipedia and the digital archives of Satakunnan Kansa regional newspaper.

5.2.1. Finnish Wikipedia

We downloaded the full database dump of Finnish Wikipedia articles dated 
2019-03-01 and converted it to plain text using the WikiExtractor tool.16 The 
dump included 452,857 articles. Each article was analyzed with Annif using a 
simple ensemble consisting of TF-IDF, fastText and Maui backends. Relatively 
strict criteria were used for selecting subjects, both because Wikipedia articles 
are focused on a single topic and to avoid false positives that could skew 
the analysis. A maximum of 3 subjects per article were chosen, and a score 
threshold of 0.85 relative to the best score was used (i.e., if the best subject 
got a score of 0.5, then up to two other subjects with a score of at least 0.425 
were included as well). This resulted in 1.56 subjects per article on average. 
The processing was performed on a standard virtual server using four CPU 
cores in parallel and took about 16 hours, at a rate of 8.0 articles per second. 
The most frequently occurring subjects according to this analysis are shown 
in Figure 6.

If we group the top 20 subjects by themes, we can see that the most com-
mon themes include cinema (films, actors, directors), music (musical groups, 
music recordings, death metal), sports (football, world championships, sports 
matches, Olympics, formula racing), and geography (lakes, villages). Some 
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surprisingly common themes are subjects related to the navy (e.g. fleet and 
naval fleet) and bishops. A spot check of articles indexed with these subjects 
reveals that there really are quite many pages about individual warships on 
Finnish Wikipedia, as well as biographical pages for bishops, most of them 
apparently imported from a database of Catholic priests. The analysis gives 
a thematic overview of Finnish Wikipedia that would be difficult to obtain 
using text processing (e.g. calculating word frequencies) alone. Since the 
vocabulary YSO is trilingual, the same analysis could also potentially be per-
formed on Swedish and English Wikipedia and the results compared on a 
conceptual level.

5.2.2. Satakunnan Kansa

We performed a similar analysis using the same methods as with the Finnish 
Wikipedia articles on the digital archives of the Satakunnan Kansa regional 
newspaper, which contains 111,850 articles published between 1987 and 2004. 
The analysis took about 4.5 hours, or 7.1 articles per second. In this case, the 
main themes were related to municipal decision-making and development 
(e.g. municipal councils, local executives, chairpersons, schools, plots of 
land, municipal managers), use of money and currencies (Finnish markka, 

Fig. 6: Most frequently occurring subjects in Finnish Wikipedia articles.
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euros, budgets) and the local jazz music festival Pori Jazz. However, many 
articles were incorrectly assigned subjects related to specific buildings such 
as the Pori Orthodox Church, the Church of Holy Trinity in Rauma, and the 
Vanhakartano Manor in Köyliö. The articles indexed with those subjects 
were mostly not concerned with those buildings but were more generally 
about the cities of Pori and Rauma and the former municipality of Köyliö. 
However, since the YSO subject vocabulary does not include places—they are 
in a separate vocabulary called YSO Places—the algorithms ended up sug-
gesting buildings located in those places instead. Even in this case the analy-
sis gives a thematic overview of the newspaper archives, but the results need 
to be interpreted carefully as some of the assigned subjects can be misleading.

5.3. Unconventional Uses

While semi-automated and fully automated indexing are the main usage sce-
narios of Annif, it can also be used for novel purposes. Since Annif provides a 
simple REST API, it can be easily integrated into various tools that go beyond 
the scope of traditional automated subject indexing.

5.3.1. Supporting Indexing of Printed Materials

Although automated indexing is mostly applied to digital materials, we have 
explored possibilities to use Annif for assisting in the indexing of traditional 
printed materials such as books and articles. We have built two prototype 
mobile apps that use the camera in a tablet or smartphone to take a picture of 
a document (or a part of it such as the introduction section), convert it to text 
using optical character recognition (OCR) technology, and analyze it using 
the Annif REST API.

The first prototype17 is a mobile web application that runs within the browser 
of a mobile device. It uses a cloud OCR service to convert the picture into 
text, which is relatively slow because the picture needs to be uploaded to 
the web, but the app works on any mobile device with a modern browser. 
The second prototype is a native Android app which uses the Google ML 
Kit18 library to perform real time OCR on the mobile device. In both apps, 
the user will then be presented with a list of suggested subjects, usually in a 
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much shorter time than it would take to read the document. However, these 
prototypes are currently just demonstrations of the idea and we have not yet 
performed any formal testing of these apps as part of an actual subject index-
ing workflow.

5.3.2. Recommending Documents Based on Web Page Text

One of the applications developed at a hackathon organized by the National 
Library of Finland, together with other partners, was a Chrome browser 
extension called Finna Recommends.19 The extension adds a small button 
with the Finna icon to the browser toolbar. The user can select any text from a 
web page and then click the button to get recommendations of related books 
(see Figure 7). Behind the scenes, the selected text is given to the Annif API, 
then the top three subjects suggested by Annif are used to query for books in 
the Finna API. This extension makes the collections of libraries available to 
any web user using just a single click, without the user having to think about 
suitable keywords.

Fig. 7: The Finna Recommends browser extension suggests of books based on selected web 
page text. The user has selected some text on a Wikipedia page for a parrot species and is 
shown recommendations for books about parrots.
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5.3.3. Powering a Chatbot

We have created a prototype chatbot user interface, called AnnifBot,20 which 
asks questions about the user’s interests, turns the responses into YSO sub-
jects using the Annif REST API, and then looks up books and images indexed 
with those subjects from the Finna API. The functionality is similar to a more 
traditional search engine such as the main discovery user interface of Finna, 
but providing a conversational user interface instead of a search form. In the 
future, such a chatbot could be integrated into Finna or other similar systems 
to make them more engaging and interactive. A similar chatbot could also 
use a custom vocabulary and model which identifies frequently occurring 
user interests and provides appropriate answers.

6. Discussion and Conclusion

Libraries and related institutions have a clear need for automating some of 
their indexing workflows. For this they need practical tools that provide 
sufficient indexing quality and that can be integrated into existing systems. 
Some commercial tools are available, but they may not always be attractive 
due to their cost, limited vocabulary and/or language support, or the vendor 
lock-in aspect. While many open source automated subject indexing projects 
are available, they are generally implementations of individual algorithms 
which may not be easy to integrate with other systems. Annif provides a new 
alternative in this space and is designed to be extensible by adding new ana-
lyzers and subject indexing algorithms.

Annif is based on a combination of natural language processing and machine 
learning tools. Annif can be adapted to different settings, including both sub-
ject indexing and classification, and it can make the best use of the results 
from different analysers. In our initial evaluations, we have found that com-
binations of existing algorithms generally perform better than individual 
algorithms. Using an ensemble of several algorithms, we could beat the F1 
score of Maui, which itself is advertised as achieving human-competitive 
indexing quality (Medelyan, 2019), by several percentage points on multiple 
very different document corpora.

Providing the Annif functionality as a REST API microservice makes it rela-
tively easy to integrate automated subject indexing functionality into existing 
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systems, as exemplified by the JYX institutional repository. We are planning 
to integrate more systems with Annif, including those used for receiving elec-
tronic deposits and for processing digitized materials. The API service also 
enables novel applications, including mobile apps, browser extensions and 
chatbots.

We are planning to further develop Annif by adding new backend algorithms 
and incorporating online learning support for more backends. We also aim to 
evaluate it with new corpora and different kinds of vocabularies, including 
place names and library classifications such as UDC and DDC. We expect to 
use Annif to help improve subject indexing and classification processes espe-
cially for electronic documents as well as collections that otherwise would 
not be indexed at all.
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Notes

1 See https://github.com/NatLibFi/Annif.

2 https://doi.org/10.5281/zenodo.2578948.

3 See https://bioportal.bioontology.org/.

4 See https://www.poolparty.biz/poolparty-extractor/.

5 See https://www.topquadrant.com/products/topbraid-tagger-autoclassifier/.

6 See https://api.finna.fi.

7 See http://www.nltk.org/.

8 See https://voikko.puimula.org/.

9 See https://github.com/NatLibFi/mauiservice.

10 See http://hunch.net/~vw/ and https://github.com/VowpalWabbit/
vowpal_wabbit.

11 See https://github.com/NatLibFi/Annif/wiki/Document-corpus-formats for 
documentation about formats.

12 See http://api.annif.org for API documentation.

13 https://www.kansalliskirjasto.fi/en/services/metadata-reserve-services/arto.

14 https://github.com/NatLibFi/Annif-corpora.

15 See https://jyx.jyu.fi/.

16 See https://github.com/attardi/wikiextractor.

17 See http://m.annif.org.

18 See https://developers.google.com/ml-kit/.

19 See https://github.com/YazanAlhalabi/Finna-recommends.

20 See http://bot.annif.org.
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