
Vol. 29, (2019) xx–xx | e-ISSN: 2213-056X

This work is licensed under a Creative Commons Attribution 4.0 International License
Uopen Journals | http://liberquarterly.eu/ | DOI: 10.18352/lq.10285

Liber Quarterly Volume 29 2019 1

Annif: DIY Automated Subject Indexing Using
 Multiple Algorithms

Osma Suominen

National Library of Finland
osma.suominen@helsinki.fi, orcid.org/0000-0003-0042-0745

Abstract

Manually indexing documents for subject-based access is a labour-intensive
process. We propose using metadata gathered from bibliographic databases
to train algorithms that assist librarians in that work. We have developed
Annif, an open source tool and microservice for automated subject index-
ing. After training it with a subject vocabulary and existing metadata, Annif
can be used to assign subject headings for new documents. We have tested
Annif with different document collections including scientific papers, old
scanned books and contemporary e-books, Q&A pairs from an “ask a librar-
ian” service, Finnish Wikipedia, and the archives of a local newspaper. The
results of analysing scientific papers and current books have been reassur-
ing, while other types of documents have proved to be more challenging.
The current version is based on a combination of existing natural language
processing and machine learning tools. By combining multiple approaches
and existing open source algorithms, Annif can build on the strengths of
individual algorithms and adapt to different settings. With Annif, we expect
to improve subject indexing and classification processes especially for elec-
tronic documents as well as collections that otherwise would not be indexed
at all.

Keywords: metadata; automated subject indexing; natural language process-
ing; machine learning

http://liberquarterly.eu/
http://dx.doi.org/10.18352/lq.10285
mailto:osma.suominen@helsinki.fi
http://orcid.org/0000-0003-0042-0745

Annif: DIY Automated Subject Indexing Using Multiple Algorithms

2 Liber Quarterly Volume 29 2019

1. Introduction

Libraries manage a vast amount of metadata about different kinds of docu-
ments. Typically, these documents are indexed with subject headings from a
subject vocabulary such as a thesaurus or subject heading system to improve
discoverability. Manually indexing documents is a very labour-intensive intel-
lectual process. Many new documents are available electronically, so it is possi-
ble to have a machine perform part of the indexing based on either the full text
or shorter pieces of text such as a summary, an abstract, or a descriptive title.

For the machine to perform well, it needs to be trained with examples.
Libraries have a lot of training data in the form of bibliographic databases,
but in many cases, only a title and possibly an abstract is available, but not the
full text. We propose to leverage that data to help indexing new documents.

To do so, we have developed Annif, an open source multi-algorithm auto-
mated indexing tool. After loading a subject vocabulary and existing meta-
data, Annif learns how to assign subject headings to new documents. It can
also be used as a web service that can be integrated with other systems. Annif
is being developed on GitHub1 and thanks to the collaboration between the
Zenodo repository and GitHub, it also has a permanent DOI.2 An initial pro-
totype was developed in early 2017 and a new version that is suitable for
production use is now ready to be used.

2. Background and Related Work

In this section we explain the typical process of operation of automated
indexing systems, review the main approaches used in automated index-
ing and discuss how automated indexing services can be provided as web
services that can be integrated with other systems. We will also consider the
limitations of existing systems from the perspective of libraries.

2.1. Process of Automated Indexing

Automated subject indexing systems generally follow a particular process.
First, text documents are preprocessed, for example by tokenizing the text into
sentences and individual words, converting words into lower case, removing

Osma Suominen

Liber Quarterly Volume 29 2019 3

stop words and/or stemming or lemmatizing words so that different gram-
matical variations of the same word are reduced to the stem or lemma that
identifies the meaning of the word. Second, the documents are often converted
into a vector representation of word frequencies, known as a bag-of-words
model, that can be used to query for matching subjects using a suitable algo-
rithm. Alternatively, the preprocessed tokens may be directly matched with
terms from a controlled vocabulary. In both cases, the result is a list of candidate
subjects for the document. In order to determine the final set of suggested sub-
jects for the document, the candidates must then be ranked and only the most
promising ones retained (Medelyan, 2009; Toepfer & Seifert, 2018).

2.2. Approaches

Algorithms for automated subject indexing can generally be divided into lexi-
cal and associative approaches (Toepfer & Seifert, 2018). In lexical approaches,
frequently occurring or otherwise salient terms in the document are matched
with terms in the vocabulary. Such algorithms can be relatively simple and
precise, but their downside is that quite often not all relevant subjects appear
verbatim in document text, so these will never be suggested by lexical algo-
rithms (Pouliquen, Steinberger, & Ignat, 2003). Associative approaches,
including machine learning algorithms, instead find correlations between
words (or, more generally, short sequences of words called n-grams) in docu-
ment text and subjects, based on a large amount of training data. These two
approaches can be considered complementary, and often the best results are
obtained by combining results from both kinds of algorithms using ensembles
and/or fusion architectures (Toepfer & Seifert, 2018).

2.2.1. Lexical Approaches

Well-known lexical automated subject indexing systems include KEA and its
successors KEA++ and Maui (Medelyan, 2009). They support multiple lan-
guages and they can be used with any indexing vocabulary. Another lexical
automated subject indexing system is the Medical Text Indexer developed by
the US National Library of Medicine for indexing medical documents with
the Medical Subject Headings vocabulary (Mork, Jimeno-Yepes, & Aronson,
2013). Although all of these systems include some machine learning aspects,

Annif: DIY Automated Subject Indexing Using Multiple Algorithms

4 Liber Quarterly Volume 29 2019

they are primarily based on lexical matching between vocabulary terms and
document terms.

2.2.2. Machine Learning Approaches

Many machine learning based systems for automated subject indexing have
been developed since the 1990s, when the approach became the dominant par-
adigm for automated subject indexing (Sebastiani, 2002). Some recent exam-
ples for which an implementation is available include Magpie (Berger, 2015;
Kim, 2014), FastXML (Prabhu & Varma, 2014), PD-Sparse (Yen, Huang, Zhong,
Ravikumar, & Dhillon, 2016), fastText (Joulin, Grave, Bojanowski, & Mikolov,
2017), Quadflor (Galke, Mai, Schelten, Brunsch, & Scherp, 2017), AnnexML
(Tagami, 2017) and Parabel (Prabhu, Kag, Harsola, Agrawal, & Varma, 2018).

2.3. Web Services

Some automated subject indexing systems are also available as web services
which can be integrated with existing document management systems. The
BioPortal ontology repository3 provides a service called Annotator, which is
given text and matches terms in the text to concepts in biomedical vocabular-
ies such as SNOMED CT. It can be used to find concepts in ontologies that
correspond to variables or other entities in a description of a biomedical data
set (Jonquet, Shah, & Musen, 2009). Another somewhat similar annotation
and entity extraction service is DBpedia Spotlight, which finds occurrences
of DBpedia entities within text (Daiber, Jakob, Hokamp, & Mendes, 2013).
The focus of both of these tools is to provide a web API for retrieving all the
matches within the given text. They do not try to determine the most relevant
subjects of a document, so by themselves they only solve the first part of an
automated subject indexing task, which is to determine possible candidate
subjects for a given text.

2.4. Commercial Tools

Some commercial vocabulary management tools also include entity extrac-
tion and/or automated subject indexing functionalities. The PoolParty

Osma Suominen

Liber Quarterly Volume 29 2019 5

thesaurus management platform includes the PoolParty Extractor module,4
which finds entities in text that correspond to concepts in the thesaurus and
may also suggest new concepts for addition. This functionality was at least
initially based on a modified version of KEA (Schandl & Blumauer, 2010).
The TopBraid Enterprise Data Graph suite includes the AutoClassifier mod-
ule5 which uses Maui to perform a similar function, suggesting concepts that
best represent the topic of an input document (Cyganiak, 2015). Both tools
provide a REST-style web API that enables integration of the subject indexing
functionality with other systems.

2.5. Limitations of Existing Systems

From the perspective of libraries, the systems mentioned above suffer from
one or more drawbacks. First, many tools are limited to a single language
(often English) and/or tied to a specific subject vocabulary. Yet subject index-
ing practices vary in different institutions and often there is a need to index
materials in multiple languages and also use several different vocabularies.
Second, the tools that are not language- or vocabulary-specific, including
KEA, KEA++, Maui and the many machine learning algorithms, can be dif-
ficult to integrate with existing systems used for cataloguing and indexing,
since they are either provided as command line tools or as software libraries
in a particular implementation language. The commercial systems provide
web services that are designed to be easily integrated with other systems, but
their implementation is controlled by the respective vendors.

3. Architecture

The first prototype of Annif was created in early 2017. It consisted of a loose
collection of Python scripts that implemented a minimal REST API and a
simple web user interface. An Elasticsearch index was used to find associa-
tions between subjects in a vocabulary and words in document titles that had
been collected from the Finna API.6 The idea was to turn a traditional text
index on its head: instead of entering a topic and getting a list of documents
about that topic in response, the input would be a single document and the
output would be the most relevant topics for that document. The name given
to the tool reflects this idea: Annif is Finna spelled backwards. The prototype

Annif: DIY Automated Subject Indexing Using Multiple Algorithms

6 Liber Quarterly Volume 29 2019

worked well enough to demonstrate the utility of the approach, but the tech-
nical implementation would have been difficult to maintain, so development
of a new version was started in early 2018.

The new Annif is implemented as a Python application using the Flask and
Connexion frameworks for web server and REST API functionality. The subject
indexing and classification is handled by different backends, i.e. different algo-
rithms that can be used either alone or in combinations (so-called ensembles).
Each backend is implemented as a separate module and new backends can be
added in the future. A more detailed system architecture diagram is shown in
Figure 1. This figure will be explained in more detail through sections 3.1 to 3.7.

3.1. Project Configuration

Annif is configured by defining projects, which are used to set up backends
and configure them with a specific vocabulary and parameters, including its
language and analyzer (see section 3.2 below). Each project is independent of

Fig. 1: Annif system architecture.

Osma Suominen

Liber Quarterly Volume 29 2019 7

other projects but in some cases projects may be linked, for example by using
the output of one project as the input of an ensemble project. The projects are
defined in a configuration file (① in Figure 1).

3.2. Analyzers

Document text needs to be preprocessed before it can be analyzed with sub-
ject indexing algorithms. In Annif, text preprocessing is handled by Analyzer
modules, that tokenize the text into sentences and individual words. Words
may further be normalized using language-specific stemming or lemmati-
zation algorithms. Tokenization and stemming are implemented using the
NLTK library,7 which provides a Snowball stemmer that supports 15 different
languages. There is also a lemmatizing algorithm for the Finnish language
based on the Voikko library.8

3.3. Vocabulary Support

Annif needs to be aware of the subject vocabulary that will be used for index-
ing. The vocabulary module handles loading and storing of vocabulary data.
Vocabularies can be loaded either from simple TSV files or from SKOS/RDF
files (② in Figure 1). The same vocabulary may be shared by multiple Annif
projects and needs to be loaded only once.

3.4. Subject Indexing Algorithms

Currently, four subject indexing algorithms have been implemented as Annif
backends. All implementations are based on existing open source libraries,
which have been integrated into the Annif framework. Maui uses a lexical
approach, while TF-IDF, fastText and Vowpal Wabbit represent different kinds
of associative approaches. Most algorithms need to be trained using existing
metadata and/or full text documents (③ in Figure 1).

3.4.1. Maui

Maui is a lexical automated subject indexing algorithm developed at the
University of Waikato (Medelyan, 2009). It incorporates a large number of

Annif: DIY Automated Subject Indexing Using Multiple Algorithms

8 Liber Quarterly Volume 29 2019

heuristics for determining which of the possible matches between terms
in a vocabulary and words in a document best represent the topics of that
document. The balance between the available heuristics is determined using
machine learning, so a relatively small amount of manually indexed docu-
ments (up to a few hundred) is required for training a Maui model. In Annif,
Maui is used via the http backend, which allows integrating subject index-
ing services which have a suitable REST API, including Annif itself and
MauiService,9 a REST microservice wrapper around Maui.

3.4.2. TF-IDF

The tfidf backend in Annif is a relatively simple statistical method used for
finding correlations between subjects in the vocabulary and words in docu-
ments. A representative set of text is formed for each subject in the vocabulary
by concatenating text (usually only titles) from documents that have been
manually indexed with that subject. The term frequencies and inverse document
frequencies are then calculated for all words appearing in those sets and these
TF-IDF values are stored as vectors in an index. For new documents, TF-IDF
vectors are similarly calculated and the most similar subjects are retrieved
from the index. The calculations are performed using the Gensim library
(Řehůřek & Sojka, 2010).

3.4.3. fastText

fastText (Joulin et al., 2017) is a machine learning algorithm for text clas-
sification created at Facebook Research. It claims to be roughly on par with
deep learning approaches despite using a simpler architecture that resem-
bles a shallow feed-forward neural network. The algorithm is relatively fast
to train compared to other machine learning approaches, in part thanks to
some tricks and shortcuts used in the implementation. The fasttext back-
end in Annif is a thin wrapper around the fastText Python bindings. There
are quite a few hyperparameters to select and these may be tuned to attain
good classification accuracy using a particular vocabulary and document
corpus.

Osma Suominen

Liber Quarterly Volume 29 2019 9

3.4.4. Vowpal Wabbit

Vowpal Wabbit (VW)10 is a general purpose online machine learning frame-
work. It was originally created by Yahoo! Research and current development
continues at Microsoft Research. The vw_multi backend in Annif is a wrapper
around several VW algorithms for multi-class and multi-label classification.
Thanks to the online learning approach, the VW models can be further trained
during use based on feedback from a user verifying the suggestions made by
the algorithm. As the most recent addition to the Annif backends it has not
yet been thoroughly evaluated, but it appears to be best suited for classifica-
tion with relatively small (fewer than 1,000 classes/subjects) vocabularies.

3.5. Ensembles and Data Fusion

All automated subject indexing algorithms have their drawbacks. Incorrect
subject assignments can be caused by many factors, including homonyms
(e.g. ‘rock’ can mean stone or a kind of music), misinterpreted names (e.g.
‘Smith’ as a surname or a profession), correlations in data that do not imply
causation, biased training data and random noise. Generally speaking, differ-
ent kinds of algorithms tend to make different mistakes. A good strategy for
improving quality is thus to combine different algorithms aiming to bring out
the strengths of individual algorithms while diminishing their flaws.

Fusion methods for automated subject indexing (Toepfer & Seifert, 2018)
are ways of combining results from multiple algorithms. The algorithms are
combined into an ensemble and the final prediction of subjects is made by
using a decision function applied on the predictions of individual algorithms.
Fusion methods can be further divided into descriptor-invariant and descriptor-
specific decision functions. In a descriptor-invariant function, every concept is
handled in the same way, while descriptor-specific functions vary per indi-
vidual concept. Annif supports two fusion backends, which combine results
from configured source backends.

3.5.1. Simple Ensemble

The ensemble backend in Annif implements a simple, descriptor-invariant
fusion method where the predictions from individual algorithms are merged

Annif: DIY Automated Subject Indexing Using Multiple Algorithms

10 Liber Quarterly Volume 29 2019

by calculating the mean of score values for each predicted subject and using
those as the final prediction. No learning is involved in this method.

3.5.2. PAV Ensemble

The pav backend in Annif implements a more advanced, descriptor-specific
fusion method. It requires some more manually indexed full text documents
for training in addition to those used to train the original backends. In experi-
ments described in more detail in section 4 below, we have obtained good
results using thousands of training documents to train PAV ensembles.

The training documents are first passed to the backend algorithms within the
ensemble. Their prediction results are compared with the manually assigned
subjects using isotonic regression, which is a statistical method that can be
used for estimating the relationship between score values returned by the
backends for particular subjects and the probability of the subject being rel-
evant for the document (Wilbur & Kim, 2014). A separate regression model
is created for each backend and each subject. New documents are first ana-
lyzed by the backends and the regression models are applied to the predicted
scores, giving predicted probabilities. The final prediction is calculated using
the mean value of the predicted probabilities.

3.6. Command Line Interface

Annif provides a command line interface which is mainly intended for ini-
tial setup, training, and evaluation of models. The training of models is done
by providing Annif with training documents expressed in simple text file
formats.11 It can also be used to assign subjects to individual documents or
document collections stored as text files. The command line interface can also
be used to evaluate the algorithms by comparing their output to manually
indexed document collections. Annif can be used to calculate many evalua-
tion metrics, including precision, recall, F1 score and normalized discounted
cumulative gain (NDCG).

When using the command line, the models need to be loaded from disk into
memory separately for each invocation, so using large models is not very effi-
cient. After initial setup and experimentation, setting up Annif as a persistent
web service is recommended.

Osma Suominen

Liber Quarterly Volume 29 2019 11

3.7. REST API

When Annif is run as a web service it provides a relatively simple REST API12
which exposes the automated indexing functionality to other applications. The
web server functionality of Annif is based on the Flask and Connexion tool-
kits and can be integrated with standard web server software such as Apache
HTTPD using a WSGI gateway service (e.g. mod_wsgi). The core method
of the API is suggest, which is given a text document and returns a JSON-
encoded list of suggested subjects (concept URIs and labels) along with their
estimated scores. Another important method is learn, which is given one or
more text documents along with verified subjects for each document, and the
corresponding models are updated based on this feedback. Currently only the
Vowpal Wabbit based backend supports this kind of feedback-based online
learning but learning support will be extended to other backends in the future.

4. Evaluation

Annif has been evaluated with several Finnish language corpora.

4.1. Vocabulary

All of the documents have been manually indexed using either the General
Finnish Thesaurus YSA or its successor, the General Finnish Ontology YSO.
For corpora indexed using YSA, the YSA subjects have been converted to
their nearest YSO equivalents.

4.2. Training Data

The following algorithms were used:

•	 TF-IDF model trained using metadata from Finna.fi
•	 fastText model trained using metadata from Finna.fi
•	 Maui model trained using a combination of all the maui-train subsets
•	 PAV specific: PAV models trained on a train set specific to each corpus
•	 PAV generic: a single PAV model trained on a combination of all train

sets

Annif: DIY Automated Subject Indexing Using Multiple Algorithms

12 Liber Quarterly Volume 29 2019

4.3. Document Corpora

The following corpora were used for evaluation:

1. Arto: Articles from the Arto13 bibliographic database (n=6,287 arti-
cles). These include both academic articles as well as less formal pub-
lications from e.g. professional journals, and cover many different
disciplines.

2. JYU Theses: Master’s and doctoral theses from University of Jyväskylä
(n=7,400) published in the years 2010 to 2017 (inclusive). These are
long, in-depth academic documents that cover many disciplines.

3. AskLib: Question and answer pairs from the Ask a Librarian service
run by public libraries in Finland. The original database consisted of
over 25,000 documents but we extracted the subset with a minimum
of 4 subjects per document (n=3,150). These are short, informal ques-
tions and answers about many different topics.

4. Satakunnan Kansa: Digital archives of Satakunnan Kansa regional
newspaper. The archives consist of over 100,000 unindexed docu-
ments. Out of these, a random sample of 50 documents was manu-
ally indexed by four librarians working independently.

The corpora 1–3 are available on GitHub, in the Annif-corpora14 public repos-
itory. In corpora 1 and 2, only links to PDF files are provided due to copyright
reasons, but the full text is available elsewhere on the web.

Each corpus was split into train, validate and test subsets, where the train set
was to be used for training Annif algorithm, the validate set for choosing opti-
mal hyperparameters and limit/threshold settings, and the test set for final
evaluation. For the Arto corpus, a random split was used. For JYU Theses
and AskLib, the corpus was split by publication time: documents published
before 2016 were assigned to the train set, documents published in 2016 to the
validate set and documents published in 2017 to the test set. For the first three
corpora, an additional maui-train subset, intended for training Maui mod-
els, was created by taking a random sample of 200 documents from the train
set. For Satakunnan Kansa, all the manually indexed documents were used
only as a test set. Each document was indexed independently by four librar-
ians. We considered each set of subjects independently, so the evaluation was
performed on 200 different document/subject combinations. The number of
documents in each subset are summarized in Table 1.

Osma Suominen

Liber Quarterly Volume 29 2019 13

4.4. Evaluation Results

The main evaluation measure was F1 score. However, since F1 score is sensi-
tive to the number of subjects assigned to each document, which is affected
by the limit and threshold parameters, we applied a limit of at most sug-
gested 5 subjects per document, which appeared to be near-optimal based on
evaluation on the validate sets. The results of evaluations on the final test sets
are shown in Figure 2.

Based on the evaluation results, we can conclude the following:

1. Of the individual algorithms, Maui performed best on all corpora.
The relative performance of TF-IDF and fastText varied by corpus,
with TF-IDF being somewhat better on average.

2. The ensemble models were always superior to individual algorithms.

Table 1: Subsets of the document corpora used for evaluation.

Corpus # train # maui-train # validate # test

Arto 5,287 (84%) 200 (3%) 500 (8%) 500 (8%)
JYU Theses 3,635 (70%) 200 (4%) 786 (15%) 766 (15%)
AskLib 2,625 (83%) 200 (6%) 213 (7%) 312 (10%)
Satakunnan Kansa – – – 50*4

Fig. 2: Evaluation results.

Annif: DIY Automated Subject Indexing Using Multiple Algorithms

14 Liber Quarterly Volume 29 2019

3. The PAV ensembles were generally superior to plain ensembles, with
the exception of the Satakunnan Kansa corpus.

4. The generic and specific PAV ensembles were roughly on par, but for
AskLib, the specific PAV ensemble performed slightly better.

5. Usage Scenarios

Automated subject indexing can be used to assist manual indexing (semi-
automated indexing), so that an algorithm is used to suggest subjects for a new
document which are then verified manually, or independently (fully auto-
mated indexing), so that the suggestions of the algorithm are accepted without
manual verification. Annif may be used in both kinds of scenarios as well as
some less conventional settings.

5.1. Semi-Automated Indexing

In semi-automated subject indexing, the quality of results is not as critical as
in the fully automated case, but the suggestions of the algorithm must still
provide value to the indexer instead of being a distraction. Automated sug-
gestions can be incorporated into existing manual indexing workflows.

5.1.1. JYX Institutional Repository

The University of Jyväskylä has integrated Annif into its institutional reposi-
tory JYX,15 which is used, among other purposes, for archiving Master’s and
doctoral theses. Students upload their thesis to the repository as a PDF file
and are then requested to enter metadata about the thesis, including subjects.
The text is extracted from the PDF document and sent to the Annif REST API
for analysis. The predicted subjects are shown to the student, who can then
select the most appropriate subjects and also enter additional subjects that the
algorithm has missed. A screenshot of the suggestions is shown in Figure 3.

The university was an early adopter of Annif and started using the REST API
of the Annif prototype in May 2018, when a new version of the JYX reposi-
tory was launched. In the beginning of November 2018, JYX switched to the

Osma Suominen

Liber Quarterly Volume 29 2019 15

REST API of the new Annif implementation. The university has collected data
about the subjects suggested by Annif for Master’s theses, the choices made
by students and the final subjects assigned by librarians, who perform the
final validation of metadata. This data makes it possible to evaluate the qual-
ity of subjects suggested by Annif and to compare the quality of the Annif
prototype against the new version.

From May to October 2018, 890 Master’s theses were uploaded to JYX and
analyzed by the Annif prototype. From November 2018 to January 2019, a
further 385 Master’s theses were uploaded and analyzed by the new version
of Annif, which used a simple ensemble model combining TF-IDF, fastText
and Maui algorithms.

Similarity between the subjects suggested by Annif (either the prototype or
new version), the subjects selected by students and the final subjects assigned
by librarians is shown in Figure 4. We can see that approximately one third of
the subjects suggested by the Annif prototype were selected both by students
and the librarians making the final choices, which already shows that the
system provided value to the users of JYX. However, the results for the new

Fig. 3: Subjects suggested by Annif after uploading a document to the JYX repository.

Annif: DIY Automated Subject Indexing Using Multiple Algorithms

16 Liber Quarterly Volume 29 2019

version were much better: students selected approximately one half of the
suggestions by Annif, and the librarians slightly more (53%). The variation in
F1 scores between documents is quite high, as shown by the error bars, indi-
cating that the results were much better for some theses than for other. In the
case of students, some of this variation can be explained by students who did
not select any subject from the suggestions (30% for the prototype, 15% for
the new version). We cannot tell whether this happened because the sugges-
tions were very bad or because of some other, unrelated reason.

The similarity scores for the new version are analyzed broken down by
university department in Figure 5. Due to the relatively small number of
documents and the high variation in F1 scores, we cannot draw any firm con-
clusions, but it appears that the best results are obtained in the humanities,
while results are not as good in mathematics, science and technology. This
pattern may be due to differences in granularity of the subject vocabulary in

Fig. 4: F1 similarity between Annif suggestions, student-selected subjects and final subjects
in JYX, for the Annif prototype and new version.

Fig. 5: F1 similarity between Annif (new version) suggestions, student-selected subjects and
final subjects in JYX, by department.

Osma Suominen

Liber Quarterly Volume 29 2019 17

different topical areas, as well as the different nature of concepts in different
fields: in the humanities, concepts may often be broader and fuzzier, whereas
in more technical fields they can be more specific and strictly bounded.

5.2. Fully Automated Indexing

Fully automated indexing is suitable for large document collections, where
manual verification of suggested subjects is not feasible. Typically, stricter
criteria are applied on the suggested concepts: the number of subjects per
document is limited to a small number and a high score or probability thresh-
old is used to restrict the assigned subjects to only the most certain ones. To
demonstrate how Annif can be applied for automatically indexing large doc-
ument collections, we have tested it on two large document corpora: Finnish
Wikipedia and the digital archives of Satakunnan Kansa regional newspaper.

5.2.1. Finnish Wikipedia

We downloaded the full database dump of Finnish Wikipedia articles dated
2019-03-01 and converted it to plain text using the WikiExtractor tool.16 The
dump included 452,857 articles. Each article was analyzed with Annif using a
simple ensemble consisting of TF-IDF, fastText and Maui backends. Relatively
strict criteria were used for selecting subjects, both because Wikipedia articles
are focused on a single topic and to avoid false positives that could skew
the analysis. A maximum of 3 subjects per article were chosen, and a score
threshold of 0.85 relative to the best score was used (i.e., if the best subject
got a score of 0.5, then up to two other subjects with a score of at least 0.425
were included as well). This resulted in 1.56 subjects per article on average.
The processing was performed on a standard virtual server using four CPU
cores in parallel and took about 16 hours, at a rate of 8.0 articles per second.
The most frequently occurring subjects according to this analysis are shown
in Figure 6.

If we group the top 20 subjects by themes, we can see that the most com-
mon themes include cinema (films, actors, directors), music (musical groups,
music recordings, death metal), sports (football, world championships, sports
matches, Olympics, formula racing), and geography (lakes, villages). Some

Annif: DIY Automated Subject Indexing Using Multiple Algorithms

18 Liber Quarterly Volume 29 2019

surprisingly common themes are subjects related to the navy (e.g. fleet and
naval fleet) and bishops. A spot check of articles indexed with these subjects
reveals that there really are quite many pages about individual warships on
Finnish Wikipedia, as well as biographical pages for bishops, most of them
apparently imported from a database of Catholic priests. The analysis gives
a thematic overview of Finnish Wikipedia that would be difficult to obtain
using text processing (e.g. calculating word frequencies) alone. Since the
vocabulary YSO is trilingual, the same analysis could also potentially be per-
formed on Swedish and English Wikipedia and the results compared on a
conceptual level.

5.2.2. Satakunnan Kansa

We performed a similar analysis using the same methods as with the Finnish
Wikipedia articles on the digital archives of the Satakunnan Kansa regional
newspaper, which contains 111,850 articles published between 1987 and 2004.
The analysis took about 4.5 hours, or 7.1 articles per second. In this case, the
main themes were related to municipal decision-making and development
(e.g. municipal councils, local executives, chairpersons, schools, plots of
land, municipal managers), use of money and currencies (Finnish markka,

Fig. 6: Most frequently occurring subjects in Finnish Wikipedia articles.

Osma Suominen

Liber Quarterly Volume 29 2019 19

euros, budgets) and the local jazz music festival Pori Jazz. However, many
articles were incorrectly assigned subjects related to specific buildings such
as the Pori Orthodox Church, the Church of Holy Trinity in Rauma, and the
Vanhakartano Manor in Köyliö. The articles indexed with those subjects
were mostly not concerned with those buildings but were more generally
about the cities of Pori and Rauma and the former municipality of Köyliö.
However, since the YSO subject vocabulary does not include places—they are
in a separate vocabulary called YSO Places—the algorithms ended up sug-
gesting buildings located in those places instead. Even in this case the analy-
sis gives a thematic overview of the newspaper archives, but the results need
to be interpreted carefully as some of the assigned subjects can be misleading.

5.3. Unconventional Uses

While semi-automated and fully automated indexing are the main usage sce-
narios of Annif, it can also be used for novel purposes. Since Annif provides a
simple REST API, it can be easily integrated into various tools that go beyond
the scope of traditional automated subject indexing.

5.3.1. Supporting Indexing of Printed Materials

Although automated indexing is mostly applied to digital materials, we have
explored possibilities to use Annif for assisting in the indexing of traditional
printed materials such as books and articles. We have built two prototype
mobile apps that use the camera in a tablet or smartphone to take a picture of
a document (or a part of it such as the introduction section), convert it to text
using optical character recognition (OCR) technology, and analyze it using
the Annif REST API.

The first prototype17 is a mobile web application that runs within the browser
of a mobile device. It uses a cloud OCR service to convert the picture into
text, which is relatively slow because the picture needs to be uploaded to
the web, but the app works on any mobile device with a modern browser.
The second prototype is a native Android app which uses the Google ML
Kit18 library to perform real time OCR on the mobile device. In both apps,
the user will then be presented with a list of suggested subjects, usually in a

Annif: DIY Automated Subject Indexing Using Multiple Algorithms

20 Liber Quarterly Volume 29 2019

much shorter time than it would take to read the document. However, these
prototypes are currently just demonstrations of the idea and we have not yet
performed any formal testing of these apps as part of an actual subject index-
ing workflow.

5.3.2. Recommending Documents Based on Web Page Text

One of the applications developed at a hackathon organized by the National
Library of Finland, together with other partners, was a Chrome browser
extension called Finna Recommends.19 The extension adds a small button
with the Finna icon to the browser toolbar. The user can select any text from a
web page and then click the button to get recommendations of related books
(see Figure 7). Behind the scenes, the selected text is given to the Annif API,
then the top three subjects suggested by Annif are used to query for books in
the Finna API. This extension makes the collections of libraries available to
any web user using just a single click, without the user having to think about
suitable keywords.

Fig. 7: The Finna Recommends browser extension suggests of books based on selected web
page text. The user has selected some text on a Wikipedia page for a parrot species and is
shown recommendations for books about parrots.

Osma Suominen

Liber Quarterly Volume 29 2019 21

5.3.3. Powering a Chatbot

We have created a prototype chatbot user interface, called AnnifBot,20 which
asks questions about the user’s interests, turns the responses into YSO sub-
jects using the Annif REST API, and then looks up books and images indexed
with those subjects from the Finna API. The functionality is similar to a more
traditional search engine such as the main discovery user interface of Finna,
but providing a conversational user interface instead of a search form. In the
future, such a chatbot could be integrated into Finna or other similar systems
to make them more engaging and interactive. A similar chatbot could also
use a custom vocabulary and model which identifies frequently occurring
user interests and provides appropriate answers.

6. Discussion and Conclusion

Libraries and related institutions have a clear need for automating some of
their indexing workflows. For this they need practical tools that provide
sufficient indexing quality and that can be integrated into existing systems.
Some commercial tools are available, but they may not always be attractive
due to their cost, limited vocabulary and/or language support, or the vendor
lock-in aspect. While many open source automated subject indexing projects
are available, they are generally implementations of individual algorithms
which may not be easy to integrate with other systems. Annif provides a new
alternative in this space and is designed to be extensible by adding new ana-
lyzers and subject indexing algorithms.

Annif is based on a combination of natural language processing and machine
learning tools. Annif can be adapted to different settings, including both sub-
ject indexing and classification, and it can make the best use of the results
from different analysers. In our initial evaluations, we have found that com-
binations of existing algorithms generally perform better than individual
algorithms. Using an ensemble of several algorithms, we could beat the F1
score of Maui, which itself is advertised as achieving human-competitive
indexing quality (Medelyan, 2019), by several percentage points on multiple
very different document corpora.

Providing the Annif functionality as a REST API microservice makes it rela-
tively easy to integrate automated subject indexing functionality into existing

Annif: DIY Automated Subject Indexing Using Multiple Algorithms

22 Liber Quarterly Volume 29 2019

systems, as exemplified by the JYX institutional repository. We are planning
to integrate more systems with Annif, including those used for receiving elec-
tronic deposits and for processing digitized materials. The API service also
enables novel applications, including mobile apps, browser extensions and
chatbots.

We are planning to further develop Annif by adding new backend algorithms
and incorporating online learning support for more backends. We also aim to
evaluate it with new corpora and different kinds of vocabularies, including
place names and library classifications such as UDC and DDC. We expect to
use Annif to help improve subject indexing and classification processes espe-
cially for electronic documents as well as collections that otherwise would
not be indexed at all.

Acknowledgements

We thank Martin Toepfer for stimulating discussions around automated
indexing methods, Markus Koskela for the suggestion to use ranking-based
evaluation measures available in the scikit-learn toolkit, Sampo Savolainen
for improving the Maui codebase and creating MauiService, Ari Häyrinen
for being an early adopter of Annif and for collecting observations of its use
in the JYX document repository, Okko Vainonen for developing the Annif
Android app, and Yazan Alhalabi, Samuel Akangbe and Steven Nebo for cre-
ating the Finna Recommends browser extension. We thank Thomas Baker,
Juho Inkinen, Anna Kasprzik, Bruno P. Kinoshita, Riitta Koikkalainen, Mona
Lehtinen, Tuula Pääkkönen, and Hugo de Vos, who provided insightful and
constructive comments on the draft manuscript.

References

Berger, M.J. (2015). Large scale multi-label text classification with semantic word vectors.
Technical Report. Stanford University. Retrieved July 8, 2019, from https://cs224d.
stanford.edu/reports/BergerMark.pdf.

Cyganiak, R. (2015, September 22). Deep dives into TopBraid EVN — Part 1:
Automated tagging with the New AutoClassifier. The Semantic Ecosystems Journal.
Retrieved March 29, 2019, from https://www.topquadrant.com/2015/09/22/
automated-tagging-evn-autoclassifier/.

https://cs224d.stanford.edu/reports/BergerMark.pdf
https://cs224d.stanford.edu/reports/BergerMark.pdf
https://www.topquadrant.com/2015/09/22/automated-tagging-evn-autoclassifier/
https://www.topquadrant.com/2015/09/22/automated-tagging-evn-autoclassifier/

Osma Suominen

Liber Quarterly Volume 29 2019 23

Daiber, J., Jakob, M., Hokamp, C., & Mendes, P.N. (2013). Improving efficiency and
accuracy in multilingual entity extraction. In M. Sabou, E. Blomqvist, T. Di Noia, H.
Sack & T. Pellegrini (Eds.), Proceedings of the 9th International Conference on Semantic
Systems (pp. 121–124). New York: ACM. https://doi.org/10.1145/2506182.2506198
Open access copy available at http://informatica.uniroma2.it/upload/2018/IA2/
Improving%20efficiency%20and%20accuracy%20in%20multilingual%20entity%20
extraction.pdf.

Galke, L., Mai, F., Schelten, A., Brunsch, D., & Scherp, A. (2017). Using titles vs.
full-text as source for automated semantic document annotation. In Proceedings of the
Knowledge Capture Conference (K-CAP 2017) (pp. 20:1–20:4). New York: ACM. https://
doi.org/10.1145/3148011.3148039 Open access copy available at https://arxiv.org/
pdf/1705.05311.

Jonquet, C., Shah, N.H., & Musen, M.A. (2009). The open biomedical annotator.
Summit on Translational Bioinformatics, 2009, 56–60. Retrieved July 8, 2019, from
https://www.ncbi.nlm.nih.gov/pubmed/21347171.

Joulin, A., Grave, E., Bojanowski, P., & Mikolov, T. (2017). Bag of tricks for efficient
text classification. In M. Lapata, P. Blunsom, & A. Koller (Eds.), Proceedings of the
15th Conference of the European Chapter of the Association for Computational Linguistics
(EACL), Volume 2, short papers (pp. 427–431). Stroudsburg, PA: ACL. Retrieved July 8,
2019, from http://aclweb.org/anthology/E17-2068.

Kim, Y. (2014). Convolutional neural networks for sentence classification. In
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP) (pp. 1746–1751). Stroudsburg, PA: Association for Computational
Linguistics. https://doi.org/10.3115/v1/D14-1181.

Medelyan, O. (2009). Human-competitive automatic topic indexing. Doctoral thesis,
University of Waikato, Hamilton, New Zealand. Retrieved July 8, 2019, from https://
hdl.handle.net/10289/3513.

Mork, J.G., Jimeno-Yepes, A., & Aronson, A.R. (2013). The NLM medical text indexer
system for indexing biomedical literature. In BioASQ@ CLEF, Proceedings of the first
workshop on Bio-Medical Semantic Indexing and Question Answering, a post-conference
workshop of Conference and Labs of the Evaluation Forum 2013 (CLEF 2013)(n.p.).
Retrieved July 8, 2019, from https://ii.nlm.nih.gov/Publications/Papers/MTI_
System_Description_Expanded_2013_Accessible.pdf.

Pouliquen, B., Steinberger, R., & Ignat, C. (2003). Automatic annotation of
multilingual text collections with a conceptual thesaurus. In Proceedings of the
Workshop ‘Ontologies and Information Extraction’ at the EUROLAN Conference, Cluj-
Napoca, Romania (pp. 19–28). Retrieved from https://arxiv.org/abs/cs/0609059.

Prabhu, Y., & Varma, M. (2014). Fastxml: A fast, accurate and stable tree-classifier for
extreme multi-label learning. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (pp. 263–272). New York: ACM.

https://doi.org/10.1145/2506182.2506198
http://informatica.uniroma2.it/upload/2018/IA2/Improving%20efficiency%20and%20accuracy%20in%20multilingual%20entity%20extraction.pdf
http://informatica.uniroma2.it/upload/2018/IA2/Improving%20efficiency%20and%20accuracy%20in%20multilingual%20entity%20extraction.pdf
http://informatica.uniroma2.it/upload/2018/IA2/Improving%20efficiency%20and%20accuracy%20in%20multilingual%20entity%20extraction.pdf
https://doi.org/10.1145/3148011.3148039
https://doi.org/10.1145/3148011.3148039
https://arxiv.org/pdf/1705.05311
https://arxiv.org/pdf/1705.05311
https://www.ncbi.nlm.nih.gov/pubmed/21347171
http://aclweb.org/anthology/E17-2068
https://doi.org/10.3115/v1/D14-1181
https://hdl.handle.net/10289/3513
https://hdl.handle.net/10289/3513
https://ii.nlm.nih.gov/Publications/Papers/MTI_System_Description_Expanded_2013_Accessible.pdf
https://ii.nlm.nih.gov/Publications/Papers/MTI_System_Description_Expanded_2013_Accessible.pdf
https://arxiv.org/abs/cs/0609059

Annif: DIY Automated Subject Indexing Using Multiple Algorithms

24 Liber Quarterly Volume 29 2019

https://doi.org/10.1145/2623330.2623651. Open access copy available from http://
manikvarma.org/pubs/prabhu14.pdf.

Prabhu, Y., Kag, A., Harsola, S., Agrawal, R., & Varma, M. (2018). Parabel: Partitioned
label trees for extreme classification with application to dynamic search advertising.
In Proceedings of the 2018 World Wide Web Conference on World Wide Web (pp. 993–
1002). International World Wide Web Conferences Steering Committee. https://doi.
org/10.1145/3178876.3185998.

Řehůřek, R., & Sojka, P. (2010). Software framework for topic modelling with
large corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks (pp. 46–50). University of Malta. Retrieved July 8, 2019, from https://
is.muni.cz/publication/884893/en.

Schandl, T., & Blumauer A. (2010) PoolParty: SKOS thesaurus management utilizing
linked data. In L. Aroyo, G. Antoniou, E. Hyvönen, A. ten Teije, H. Stuckenschmidt,
L. Cabral, & T. Tudorache (Eds.), The Semantic Web: Research and Applications. ESWC
2010. Lecture Notes in Computer Science, vol 6089 (pp. 421–425). Berlin, Heidelberg:
Springer. https://doi.org/10.1007/978-3-642-13489-0_36.

Sebastiani, F. (2002). Machine learning in automated text categorization. ACM
Computing Surveys (CSUR), 34(1), 1–47. https://doi.org/10.1145/505282.505283.
Retrieved from https://arxiv.org/abs/cs/0110053v1.

Tagami, Y. (2017). AnnexML: Approximate nearest neighbor search for extreme multi-
label classification. In Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (pp. 455–464). New York: ACM. https://doi.
org/10.1145/3097983.3097987.

Toepfer, M., & Seifert, C. (2018). Fusion architectures for automatic subject indexing
under concept drift. International Journal on Digital Libraries, 1–21 (E-pub ahead of
print). https://doi.org/10.1007/s00799-018-0240-3 Open access copy available from
https://research.utwente.nl/files/80439235/Toepfer2018_ijdl_subject_indexing_
under_concept_drift_preprint.pdf.

Wilbur, W.J., & Kim, W. (2014). Stochastic gradient descent and the prediction of
MeSH for PubMed records. AMIA Annual Symposium Proceedings, 2014, 1198–207.
Retrieved July 8, 2019, from https://www.ncbi.nlm.nih.gov/pubmed/25954431.

Yen, I.E.H., Huang, X., Zhong, K., Ravikumar, P., & Dhillon, I.S. (2016). PD-Sparse: A
primal and dual sparse approach to extreme multiclass and multilabel classification.
In M.F. Balcan & K.Q. Weinberger (Eds.), Proceedings of the 33rd International Conference
on Machine Learning (pp. 3069–3077). New York: ACM. Retrieved July 8, 2019, from
http://proceedings.mlr.press/v48/yenb16.pdf.

https://doi.org/10.1145/2623330.2623651
http://manikvarma.org/pubs/prabhu14.pdf
http://manikvarma.org/pubs/prabhu14.pdf
https://doi.org/10.1145/3178876.3185998
https://doi.org/10.1145/3178876.3185998
https://is.muni.cz/publication/884893/en
https://is.muni.cz/publication/884893/en
https://doi.org/10.1007/978-3-642-13489-0_36
https://doi.org/10.1145/505282.505283
https://arxiv.org/abs/cs/0110053v1
https://doi.org/10.1145/3097983.3097987
https://doi.org/10.1145/3097983.3097987
https://doi.org/10.1007/s00799-018-0240-3
https://research.utwente.nl/files/80439235/Toepfer2018_ijdl_subject_indexing_under_concept_drift_preprint.pdf
https://research.utwente.nl/files/80439235/Toepfer2018_ijdl_subject_indexing_under_concept_drift_preprint.pdf
https://www.ncbi.nlm.nih.gov/pubmed/25954431
http://proceedings.mlr.press/v48/yenb16.pdf

Osma Suominen

Liber Quarterly Volume 29 2019 25

Notes

1 See https://github.com/NatLibFi/Annif.

2 https://doi.org/10.5281/zenodo.2578948.

3 See https://bioportal.bioontology.org/.

4 See https://www.poolparty.biz/poolparty-extractor/.

5 See https://www.topquadrant.com/products/topbraid-tagger-autoclassifier/.

6 See https://api.finna.fi.

7 See http://www.nltk.org/.

8 See https://voikko.puimula.org/.

9 See https://github.com/NatLibFi/mauiservice.

10 See http://hunch.net/~vw/ and https://github.com/VowpalWabbit/
vowpal_wabbit.

11 See https://github.com/NatLibFi/Annif/wiki/Document-corpus-formats for
documentation about formats.

12 See http://api.annif.org for API documentation.

13 https://www.kansalliskirjasto.fi/en/services/metadata-reserve-services/arto.

14 https://github.com/NatLibFi/Annif-corpora.

15 See https://jyx.jyu.fi/.

16 See https://github.com/attardi/wikiextractor.

17 See http://m.annif.org.

18 See https://developers.google.com/ml-kit/.

19 See https://github.com/YazanAlhalabi/Finna-recommends.

20 See http://bot.annif.org.

https://github.com/NatLibFi/Annif
https://doi.org/10.5281/zenodo.2578948
https://bioportal.bioontology.org/
https://www.poolparty.biz/poolparty-extractor/
https://www.topquadrant.com/products/topbraid-tagger-autoclassifier/
https://api.finna.fi
http://www.nltk.org/
https://voikko.puimula.org/
https://github.com/NatLibFi/mauiservice
http://hunch.net/~vw/
https://github.com/VowpalWabbit/vowpal_wabbit
https://github.com/VowpalWabbit/vowpal_wabbit
https://github.com/NatLibFi/Annif/wiki/Document-corpus-formats
http://api.annif.org
https://www.kansalliskirjasto.fi/en/services/metadata-reserve-services/arto
https://github.com/NatLibFi/Annif-corpora
https://jyx.jyu.fi/
https://github.com/attardi/wikiextractor
http://m.annif.org
https://developers.google.com/ml-kit/
https://github.com/YazanAlhalabi/Finna-recommends
http://bot.annif.org

